
Using Semidefinite Programming to Decode

Binary Linear Codes

Anmol Kagrecha James Saunderson
EE, IIT Bombay ECSE, Monash University

Abstract

We propose a semidefinite programming (SDP) based decoding algorithm for approximate max-
imum likelihood (ML) decoding of an arbitrary binary linear code transmitted over a binary sym-
metric channel (BSC). Firstly, we show that any integer solution of the SDP is a codeword, and so is
the solution of the ML decoding problem. Second, we show that the probability of error is indepen-
dent of transmitted codeword. Third, we show that whenever the linear programming (LP) based
decoder of Feldman et al. [2006] succeeds, so does our decoder. However, on performing simulations
using LDPC codes on the BSC channel, we observe that the SDP decoder doesn’t give a significant
improvement in performance when compared to the LP decoder.

1 Introduction

Maximum likelihood decoding for several classes of codes is a provably a NP-hard problem Berlekamp
et al. [1978]. Practical decoding algorithms like belief propagation usually work well, but lack rigorous
guarantees on performance. Feldman et al. [2006] used a LP decoder and showed that their decoder
could correct a constant fraction of errors for a certain class of LDPC codes. Semidefinite programming
is a more general and powerful technique compared to linear programming. It is quite natural to ask
how much better the SDP decoders could perform in comparison to LP decoders practically and if
better guarantees can be provided?

We are able to show that the performance of the SDP decoder is at least as good as the performance
of the LP decoder. We also prove some basic results related to the SDP decoder, viz., any integer
solution of the SDP is a codeword and the probability of error of the decoder is independent of the
transmitted codeword for any memory-less channel.

Finally, we perform some numerical simulations on LDPC codes. It turns out that the performance
of the SDP decoder is only marginally better than the LP decoder. This can be attributed to the
sparsity of the LDPC codes. LP decoding relaxation captures the relations well enough and additional
constraints in the SDP don’t give a significant advantage.

2 Preliminaries

2.1 LDPC Codes

Consider a binary linear code C with a parity-check matrix H of size m × n and rate at least 1−m/n.
Let V = {1, · · · , n} and C = {1, · · · ,m} be the indices of columns and rows of H respectively. Code
C can be represented as a bipartite graph with node sets V and C, and edges (v, c) between variable
node v and check node c for all v, c where Hc,v = 1. The bipartite graph G representation of a code
is called the Tanner graph or the factor graph of the code. If the parity-check matrix is sparse, i.e.,
the number of non-zero entries in the matrix is bounded and independent of n, then the code is said
to have low density.

Graph G can be used to visualize the code. Each variable node v is assigned a bit {0, 1} from
the codeword. A check node c is satisfied if the binary sum of bits assigned to variable nodes in the
neighborhood of c is zero. The n bits form a valid codeword iff all the parity checks are satisfied.

1

2.2 Symmetric representation of a binary linear code

For a binary linear code C, the original codeword polytope is defined as convex hull of all possible
codewords

poly(C) =

{∑
f∈C

λff : λf ≥ 0,
∑
f∈C

λf = 1

}
For every codeword f ∈ C, consider x whose components are xi = (−1)fi ∀i ∈ {1, ..., n}. We call x as
the symmetric representation of f. We further define

Cx = {x ∈ {±1}n : xi = (−1)fi ∀i ∈ {1, ..., n} ∀ f ∈ C}

poly(Cx) =

{∑
x∈Cx

λxx : λx ≥ 0,
∑
x∈Cx

λx = 1

}

Let the neighborhood of a check c ∈ C be denoted as N (c). If N (c) = {vc,1, ..., vc,k} , then the check
is satisfied if the binary sum fvc,1 + ... + fvc,k = 0. Similarly, we say x ∈ Cx satisfies the check c if∏k
i=1 xc,i = 1. For a check c involving k variable nodes define

Cx,c = {x ∈ {±1}n :
k∏
i=1

xvi = 1, Hc,vi = 1}

poly(Cx,c) =

 ∑
x∈Cx,c

λxx : λx ≥ 0,
∑

x∈Cx,c

λx = 1


2.3 Projection based description of a parity polytope

Consider the following polytope:

PARn = conv{(x0,1, x0,2, ..., x0,n) ∈ {−1, 1}n :
n∏
i=1

x0,i = 1}

It requires O(2n) inequalities to describe PARn. However, a more efficient representation exists which
requires only O(n) inequalities to describe. The is a projection based description and is described
below.

If n = 2m+ 1 introduce new variables x1,1, x1,2, ..., x1,m+1 such that

(x0,1,x0,2, x1,1) ∈ PAR3

(x0,3,x0,4, x1,2) ∈ PAR3

...

(x0,2m−1,x0,2m, x1,m) ∈ PAR3

(x2m+1, x1,m+1) ∈ PAR2

If n = 2m introduce new variables x1,1, x1,2, ..., x1,m such that

(x0,1,x0,2, x1,1) ∈ PAR3

(x0,3,x0,4, x1,2) ∈ PAR3

...

(x0,2m−1,x0,2m, x1,m) ∈ PAR3

Similarly for the
⌊
n+1
2

⌋
new variables, introduce

⌊
bn+1

2 c+1

2

⌋
new variables satisfying parity constraints

2

as shown above until there are only 2 or 3 new variables introduced.

PROn = {(x0,1, x0,2, ..., x0,n) : (x0,1,x0,2, x1,1) ∈ PAR3

(x0,3,x0,4, x1,2) ∈ PAR3

...

(x0,2bn2 c−1,x0,2bn2 c, x1,bn2 c) ∈ PAR3

...}

We next mention the inequalities describing PAR2 and PAR3. (x1, x2) ∈ PAR2 if

x1 − x2 ≤ 0

x2 − x1 ≤ 0

|x1| ≤ 1

|x2| ≤ 1

(x1, x2, x3) ∈ PAR3 if

x1 − x2 + x3 ≤ 1

−x1 + x2 + x3 ≤ 1

x1 + x2 − x3 ≤ 1

−x1 − x2 − x3 ≤ 1

Observe |xi| ≤ 1 ∀i ∈ {1, 2, 3} is implied by the four equations given above.

2.4 Equivalent Parity Check Matrix

A parity check matrix of a binary linear code could have an arbitrary number of variables for a check.
However, for our SDP decoder we require that the checks have parity 2 or 3. All the checks in the
original parity check matrix can be converted to an equivalent check matrix by introducing additional
variables as we did in the previous subsection. The polytopes corresponding to these two parity check
matrices can be shown to be the same.

2.5 Communication Model

We assume that a codeword f from a binary linear code C is transmitted over a binary symmetric channel
with bit flipping probability p. The output of this channel is denoted by g. The communication process
is equivalent to sending x ∈ Cx over a channel which flips 1 to −1 with probability p and vice-versa. Let
the output of this channel be denoted by y. Given a parity check matrix H, we convert it to another
parity check matrix H ′ using the method in Section 2.3. We use this modified code for communication.

3 Semidefinite programming based decoder

For any binary linear code C, we formulate a semidefinite programming based decoder. First, we convert
the parity check matrix H into H ′ where H ′ has checks with 2 or 3 variables using the ideas given in
Section 2.3 . Denote the set of checks for H ′ as C ′ and the set of variables for H ′ as V ′.

For a check c ∈ C, let the number of neighbors |N (c)| be denoted as kc. Then index the variables
in V ′ as follows: the first n are the 0th stage variables, the next

∑
c∈Cb

kc+1
2 c are the 1st stage variables

and so on.
The variable in our SDP is denoted by Z. Output of the SDP decoder will be x∗ = Z[2 : n + 1] if

x∗ ∈ {±1}n, otherwise we will declare an error. The size of the matrix Z is (|V ′|+ 1)× (|V ′|+ 1).

3

The first constraint of the SDP is that Z has to be a semidefinite matrix:

Z � 0

We want the output of the SDP to be in {±1}n. Hence, the corresponding constraint is:

Zi,i = 1 ∀i = {1, ..., n}

finally we should have constraints related to parity check H ′. If we have a check c′ ∈ C ′ involving three
variables z1, z2, z3 having index i1, i2, i3, then there should be constraints like

Z[i1 + 1, 1] = Z[i2 + 1, i3 + 1]

Z[i2 + 1, 1] = Z[i3 + 1, i1 + 1]

Z[i3 + 1, 1] = Z[i1 + 1, i2 + 1]

and if we have a check c′ ∈ C ′ involving two variables z1, z2 having index i1, i2, then there should be
constraints like

Z[i1 + 1, 1] = Z[i2 + 1, 1]

Z[i1 + 1, i2 + 1] = 1

Using the ideas given above we formulate the SDP for decoding -

maximize 〈Y, Z〉
s.t. Z � 0

〈Ei,i, Z〉 = 1 ∀i ∈ {1, ..., 1 + |V ′|}
〈Bi,c′ , Z〉 = 0 ∀i ∀c′ ∈ C ′

where Y =

 0 yT /2 01×|V ′|−n
y/2 0|V ′|×|V ′|

0|V ′|−n×1


Ei,i[j, k] =

{
1, (j, k) = (i, i)

0, otherwise

For a check c′ involving three variables having index i1, i2, i3, we will have three B1,c′ , B2,c′ , B3,c′ of the
form -

B1,c′ [j, k] =


1, (j, k) ∈ {(1, i1 + 1), (i1 + 1, 1)}
−1, (j, k) ∈ {(i3 + 1, i2 + 1), (i2 + 1, i3 + 1)}
0, otherwise

For a check c′ involving two variables having index i1, i2, we will have three B1,c′ , B2,c′ of the form -

B1,c′ [j, k] =


1, (j, k) ∈ {(i1 + 1, i1 + 1), (i2 + 1, i2 + 1)}
−1, (j, k) ∈ {(i1 + 1, i2 + 1), (i2 + 1, i1 + 1)}
0, otherwise

B2,c′ [j, k] =


1, (j, k) ∈ {(i1 + 1, 1), (1, i1 + 1)}
−1, (j, k) ∈ {(i2 + 1, 1), (1, i2 + 1)}
0, otherwise

4

3.1 Codewords in Feasible Region of SDP

Consider a codeword x0 ∈ Cx. Then we can construct x′ such that x′ satisfies all checks c′ ∈ C ′. We
claim that the following lies in the feasible region of SDP -

Z ′ =

[
1 x

′T

x′ x′x
′T

]
Firstly, note that Z ′ � 0. Then observe that x

′2
i = 1 ∀i ∈ {1, ..., |V ′|}. Hence, all constraints related to

Ei,i are satisfied. Finally, observe the following -

Z ′[i+ 1, 1] = x′i

Z ′[i+ 1, j + 1] = x′i+1x
′
j+1

The relations implied by Bi,c′ matrices reduce to parity constraints as can be seen above. As x′ satisfies
all the checks, all constraints related to Bi,c′ are satisfied. Hence, all codewords have a Z that lies in
the feasible region of SDP.

3.2 Integer Solution from SDP

Here, we show that if the output x∗0 of the SDP is integral, i.e., x∗0 ∈ {±1}n, then the output is indeed
a codeword.

3.2.1 Rank one solution

On solving the SDP we get the solution Z∗. As x∗0 = Z∗[2 : n + 1, 1]. If x∗0 ∈ {±1}n, then we claim
that Z∗ has rank one and

Z∗ =

[
1 x′T

x′ x′x′T

]
where x′[1 : n] = x∗0

and x′ ∈ {±1}n

i.e., we don’t need to check if all the variables have absolute value 1 to ensure that the code is valid.
We can just check if the original values have absolute value 1 to see if the code is valid.

Proof - First, consider the case for n = 2

Z∗ =

 1 x∗0,1 x∗0,2
x∗0,1 1 Z∗2,3
x∗0,2 Z∗3,2 1


Note that Z∗2,3 = Z∗3,2 because Z∗ is semidefinite. The diagonal entries are 1 because they are

constraints of the SDP. Determinant of Z∗ should be positive. Hence we have,

det(Z∗) =

∣∣∣∣∣∣
1 x∗0,1 x∗0,2
x∗0,1 1 Z∗2,3
x∗0,2 Z∗3,2 1

∣∣∣∣∣∣ ≥ 0

As x∗20,i = 1 ∀i ∈ {1, 2}

det(Z∗) = −(Z∗2,3 − x∗0,1x∗0,2)2

⇒− (Z∗2,3 − x∗0,1x∗0,2)2 ≥ 0

⇒Z∗2,3 = x∗0,1x
∗
0,2

⇒Z∗ =

 1 x∗0,1 x∗0,2
x∗0,1 x∗20,1 x∗0,1x

∗
0,2

x∗0,2 x∗0,1x
∗
0,2 x∗20,2


5

To prove this for general n, we use the following property of semidefinite matrices -
All principal minors of a semi-definite matrix are non-negative. For length n codes we have -

Z∗ =


1 x∗0,1 . . . x∗0,n . . .

x∗0,1 1 . . . Z∗n+1,2 . . .
...

...
. . .

...
...

x∗0,n Z∗n+1,2 . . . 1 . . .
...

...
. . .

...
...


First, we show Z∗i+1,j+1 = x∗0,ix

∗
0,j where i 6= j and i, j ≤ n. Consider a principal minor indexed by

s = {1, i+ 1, j + 1}

Z∗s =

 1 x∗0,i x∗0,j
x∗0,i 1 Z∗i+1,j+1

x∗0,j Z∗j+1,i+1 1


As Z∗ is PSD,

det(Z∗s) ≥ 0

⇒− (Zi+1,j+1 − x∗0,ix∗0,j)2 ≥ 0

⇒Zi+1,j+1 = x∗0,ix
∗
0,j

Now consider any constraint involving level 1 and level 0 variables. If n is odd, then we will have
constraints Bi,c′ corresponding to a degree 2 check. Hence,

x0,2m+1 = x1,m+1

For constraints constructed from degree 3 checks, consider a check c′ ∈ C ′. Without loss of generality,
let it involve x0,1, x0,2 and x1,1. Let the index for the the variables be 1,2 and n + 1. We just showed
Z[2, 3] = x0,1x0,2. From the constraint 〈B3,c′ , Z〉, we have -

Z[n+ 2, 1] = Z[2, 3]

⇒x1,n+1 = x0,1x0,2

⇒x1,n+1 ∈ {±1}

Similarly, we can show all the level 1 variables belong to {±1}. We can now recursively show Z[i +
1, j + 1] = x′ix

′
j and x′ ∈ {±1}|V ′|. Hence we have,

Z∗ =

[
1 x′

x′ x′x′T

]
i.e., Z∗ is of rank one.

3.2.2 Validity of the decoded word

If we have

Z∗[i+ 1, j + 1] = x′ix
′
j where i 6= j

Z∗[i+ 1, 1] = x′i ∀i ∈ {1, ..., |V ′|}

and x′ ∈ {±1}|V ′|

then the constraints 〈Bi,c′ , Z〉 just reduce to parity checks. Because x′ satisfies these constraints, it
satisfies the parity checks as well. Hence, x′ ∈ C ′x i.e., all the integer solutions of the SDP decoder are
valid codewords.

6

3.3 SDP Decoder is as strong as the LP Decoder

3.3.1 Using Primal Problem

In this section, we would like to prove that the feasible region of the SDP decoder is at least as close
to the convex hull of codewords as the feasible region of the LP decoder. This means that the SDP
decoder will at least have the error correcting performance of the LP decoder.

Assume we had a check c′ ∈ C ′ which involved the checks z1, z2 and z3. For simplicity of analysis
and without loss of generality provide them index 1,2 and 3. Then the constraints for the LP are

−z1 + z2 + z3 ≤ 1

z1 − z2 + z3 ≤ 1

z1 + z2 − z3 ≤ 1

−z1 − z2 − z3 ≤ 1

and the constraints for SDP are-

Z � 0

Z[i, i] = 1 ∀i
Z[1 + 1, 2 + 1] = z3

Z[2 + 1, 3 + 1] = z1

Z[3 + 1, 1 + 1] = z2

⇒Z =


1 z1 z2 z3 . . .
z1 1 z3 z2 . . .
z2 z3 1 z1 . . .
z3 z2 z1 1 . . .
...

...
. . .

...
...


We know that for a semidefinite matrix Z

aTZa ≥ 0 ∀ a ∈ R1+|V ′|

Put a = [−1,−1, 1, 1, 0, ..., 0]T , then we have

4(1 + z1 − z2 − z3) ≥ 0

⇒− z1 + z2 + z3 ≤ 1

Similarly, put a = [−1, 1,−1, 1, 0, ..., 0]T to get

z1 − z2 + z3 ≤ 1

Put a = [−1, 1, 1,−1, 0, ..., 0]T to get
z1 + z2 − z3 ≤ 1

Put a = [−1,−1,−1,−1, 0, ..., 0]T to get

−z1 − z2 − z3 ≤ 1

It is easy to verify that the LP constraints for weight 2 checks can be derived from corresponding SDP
constraints. It is easy to see that the semidefinite constraint on Z introduces many more constraints
than the LP constraints. Hence, the SDP constraints are at least as strong as the LP constraints.

7

3.3.2 Using Dual Problem

The dual problem for the SDP is the following -

minimize

1+|V ′|∑
i=1

θi +
∑
c′∈C′

∑
i

ωi,c′

s.t. S(θ, ω, y) =

1+|V ′|∑
i=1

Ei,iθi +
∑
c′∈C′

∑
i

Bi,c′ωi,c′ − Y � 0

If x = 1n is the unique solution of the SDP decoder then,

〈S(θ, ω, y),
1 ... 1
...

. . .
...

1 ... 1

〉 = 0

⇒S(θ, ω, y)11+|V
′| = 01+|V

′|

Using the identity above, we can replace θi in terms of yi and ωi,c′ .
The condition for 1|V

′| to be optimum for the LP decoder is:

y′ =
∑
c

∑
j

∑
i

αi,j,cai,j,c

αi,j,c > 0 ∀i ∀j ∀c

where ai,j,c are the normals to hyperplanes at the intersection of which 1|V
′| lies. The statement above

follows from complementary slackness theorem.
We will show that if y′ has the form given above, then S(θ, ω, y) � 0. For the simplicity of exposition,

consider a check c′ ∈ C ′ involving variables z1, z2, z3 having index 1,2 and 3. Further consider the matrix
given below -

s(α, ω, c′) =
α1+α2+α3−ω1−ω2−ω3 ω1+α1−α2−α3 ω2+α2−α1−α3 ω3+α3−α1−α2

ω1+α1−α2−α3 −ω1−α1+ω2+α2+ω3+α3 −ω3 −ω2
ω2+α2−α1−α3 −ω3 −ω2−α2+ω1+α1+ω3+α3 −ω1
ω3+α3−α1−α2 −ω2 −ω1 −ω3−α3+ω1+α1+ω2+α2

The additional subscripts related to check have been removed for the ease of readability. One can verify
that S(θ, ω, y) can be written in terms of ωs and αs alone. Observe that

S(θ, ω, y) =
∑
c′∈C′

s′(α, ω, c′)

where s′(α, ω, c′) has non-zero terms at appropriate index and is zero everywhere else.
We will show that for any set of αi,c′ ≥ 0, we can find ωi,c′ such that s′(α, ω, c′) � 0 ∀c′ ∈ C ′.

Because sum of positive semidefinite matrices is a semidefinite matrix, S(θ, ω, y) � 0. Again for the
ease of notation, consider the s′(α, ω, c′) where c′ involves variables with index 1,2, and 3. Put

ω1 =
α2 + α3 − α1

2

ω2 =
α1 + α3 − α2

2

ω3 =
α1 + α2 − α3

2

to get

s′(α, ω, c′) =



α1+α2+α3
2

α1−α2−α3
2

−α1+α2−α3
2

−α1−α2+α3
2 0 . . .

α1−α2−α3
2

α1+α2+α3
2

−α1−α2+α3
2

−α1+α2−α3
2 0 . . .

−α1+α2−α3
2

−α1−α2+α3
2

α1+α2+α3
2

α1−α2−α3
2 0 . . .

−α1−α2+α3
2

−α1+α2−α3
2

α1−α2−α3
2

α1+α2+α3
2 0 . . .

0 0 0 0 0 . . .
...

...
. . .

...
...

...


8

Consider the following rank one matrices of the form aaT -

A1 =



1 1 −1 −1 0 . . .
1 1 −1 −1 0 . . .
−1 −1 1 1 0 . . .
−1 −1 1 1 0 . . .
0 0 0 0 0 . . .
...

...
. . .

...
...

...



A2 =



1 −1 1 −1 0 . . .
−1 1 −1 1 0 . . .
1 −1 1 −1 0 . . .
−1 1 −1 1 0 . . .
0 0 0 0 0 . . .
...

...
. . .

...
...

...



A3 =



1 −1 −1 1 0 . . .
−1 1 1 −1 0 . . .
−1 1 1 −1 0 . . .
1 −1 −1 1 0 . . .
0 0 0 0 0 . . .
...

...
. . .

...
...

...


Note that each of the above matrices are PSD. Also observe the following -

s′(α, ω, c′) =
α1

2
A1 +

α2

2
A2 +

α3

2
A3

Because each α ≥ 0, and each A is PSD, s′(α, ω, c′) is also PSD. It can be similarly shown that each
s′(α, ω, c′) is PSD for all the checks c′ ∈ C ′. The proof can be easily extended to checks involving only
two variables. Hence, all s′(α, ω, c′) are PSD and S(θ, ω, y) � 0.

So, this gives an alternative proof to the statement that if LP decoder succeeds, then SDP decoder
succeeds.

3.4 Probability of Error is Independent of Transmitted Codeword

The proof is very similar to that for the LP decoder (see, Appendix 3 of Feldman et al. [2005]). The
non-trivial part of the proof is to define the relative solution and to show that the relative solution is
a valid solution to the SDP decoder.

B(x) ⊂ Σn is the set of received words ŷ that cause the decoding failure, assuming x was transmitted.
ŷ1 is defined as ŷ1i = ŷixi for the BSC channel. Define

X ′ =

[
1 x

′T

x′ xx
′T

]
where x ∈ Cx.

For any feasible solution Z of the SDP, define the relative solution Zr with respect to X as the
following -

Zri,j = Zi,jX
′
i,j

Now we need to show that Zr satisfies all the constraints of the SDP. Note the following -

Zri,i =Zi,iX
′
i,i

=1 ∗ 1

=1

⇒ 〈Zr, Ei,i〉 = 1

9

For a check c′ ∈ C ′ involving three variables with index i,j and k we have -

Zi+1,j+1 = Zk+1,1

and X ′i+1,j+1 = Zk+1,1

∵Zri+1,j+1 = Zi+1,j+1X
′
i+1,j+1

⇒Zri+1,j+1 = Zk+1,1X
′
k+1,1

⇒Zri+1,j+1 = Zrk+1,1

Similarly, the other two constraints of the type 〈Bi,c′Zr〉 = 0 will be satisfied. Hence, all the constraints
due to checks involving 3 variables will be satisfied. The reader can easily verify this for the checks
with weight 2.

Finally, we’re left to prove that Zr is a PSD matrix. First, define x′0 = 1. Then notice that
X ′i+1,j+1 = x′ix

′
j ∀i, j ≥ 0. Hence, Zri+1,j+1 = Zi+1,j+1x

′
ix
′
j or

Zr =


1

x′1
x′2

. . .

Z


1
x′1

x′2
. . .


which is of the form ATZA where A is invertible and Z is PSD. Hence, Zr is also PSD.

The rest of the proof is very similar to the proof for LP decoder. We eventually get that the
probability of error for the SDP decoder is independent of the codeword transmitted.

4 Numerical Experiments

To compare the performance of the LP decoder and SDP decoder, we construct a pseudo-random LDPC
code of length 60 which has a degree 4 for each check. We use MOSEK to solve the underlying LP
and SDP. As can be seen in Figure 1 that performance of SDP decoder is only slightly better than LP
decoder.

Figure 1: Performance of SDP and LP Decoders

Intuitively, LDPC codes are sparse and it seems that the LP decoder is able to capture the sparse
connections well enough; additional constraints in the SDP decoder don’t contribute a lot towards
improving the performance.

10

References

Jon Feldman, Tal Malkin, Rocco A Servedio, Cliff Stein, and Martin J Wainwright. Lp decoding
corrects a constant fraction of errors. IEEE Transactions on Information Theory, 53(1):82–89, 2006.

Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the inherent intractability of certain
coding problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386, 1978.

Jon Feldman, Martin J Wainwright, and David R Karger. Using linear programming to decode binary
linear codes. IEEE Transactions on Information Theory, 51(3):954–972, 2005.

11

	Introduction
	Preliminaries
	LDPC Codes
	Symmetric representation of a binary linear code
	Projection based description of a parity polytope
	Equivalent Parity Check Matrix
	Communication Model

	Semidefinite programming based decoder
	Codewords in Feasible Region of SDP
	Integer Solution from SDP
	Rank one solution
	Validity of the decoded word

	SDP Decoder is as strong as the LP Decoder
	Using Primal Problem
	Using Dual Problem

	Probability of Error is Independent of Transmitted Codeword

	Numerical Experiments

