
Parameter Estimation in

Heat Shock Response of E. coli

Anmol Kagrecha, 15D070024

November 27, 2018

1 Introduction

One of the typical problems in computational modeling of biological systems is to estimate the parameters.
Only a subset of parameters can be measured experimentally. The other parameters are estimated from
the observed data. As a part of this project, I’ll be using the example of heat shock response of E. coli to
illustrate the parameter estimation problem.

A hybrid extended Kalman filter is applied to estimate the parameters from the observed data. Then, a
posteriori indentifiability test is employed to check the reliability of estimates. Finally, these tools are used
to discriminate between two different models and determine which model describes the observed data better.

2 Biological System

Exposure to high temperatures causes proteins to unfold from their actual three-dimensional structure which
might eventually lead to death of the cell. To mitigate the effects of heat, cells express heat shock proteins
whose role is to refold unfolded or misfolded proteins.

The heat shock response in E. coli is executed using an intricate architecture of feedback loops. There
are three major participants that take part in regulation: proteins called chaperones which help in folding,
transcription initiators called σ32 which help chaperones to be produced and the unfolded proteins.

At physiological temperatures (30◦C to 37◦C), amount of σ32 is very low. On increase in temperature,
σ32 accumulates and causes an increase in the amount of chaperones produced. Amount of σ32 then decreases
to a steady state value. Due to production of chaperones, number of unfolded proteins also decreases.

Figure 1: Molecular Implementation
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3 The Model

The process can be modelled using the following differential equations -

Ḋt =
KdSt(1 +KuUf )

1 +KuUf +KsDt
− αdDt

Ṡt = η(T )− α0St −
αsKsDtSt

1 +KuUf +KsDt

U̇f = K(T )[Pt − Uf ]− [K(T ) +Kfold]Dt

where Dt is the number of molecules of chaperones, St is the number of molecules of σ32, and Uf is the
number of unfolded proteins. The other parameters are constants whose values are given below -

Parameter Value
η(T ) 10 molecule.min−1 normally

60 molecule.min−1 in heat shock
K(T ) 40min−1 normally

80 min−1 in heat shock
Kd 3 min−1

αd 0.015 min−1

α0 0.03 min−1

αs 3 min−1

Ks 0.05 molecule−1

Ku 0.024 molecule−1

Kfold 6000 min−1

Pt 2 x 106 molecules

4 Methods

4.1 Hybrid Extended Kalman Filter

Consider the following system -

ẋ = f(x, u) + w

yk = hk(x(tk)) + vk

It is assumed that there is a continuous time process which is to be estimated using discrete time mea-
surements of the output. Assume measurements are available at instants t1, ..., ts and y1, ..., ys are the
corresponding measurements.

The process noise w is assumed to be zero mean Gaussian with covariance matrix Q. The measurement
noise vk is assumed to zero mean Gaussian with covariance matrix Rk = R.

The following algorithm is employed to find the estimates -

1. Initial estimate of x0, x̂+0 = E[x0]

2. Initial error covariance P+
0 = E[(x− x+0 )(x− x+0 )T ]

3. The current a priori estimate x̂−k is found by integrating the continuous time process in the interval
[tk−1, tk] using the previous a posteriori estimate x̂+k−1.

˙̂x = f(x̂, u)

x̂(tk−1) = x̂+k−1

⇒x̂−k = x̂(tk)
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4. The current a priori error covariance estimate P−k is found by integrating a Lyapunov equation using
previous a posteriori error covariance estimate P+

k−1.

Ṗ = AkP + PATk +Q

P (tk−1) = P+
k−1

⇒P−k = P (tk)

where Ak is the Jacobian of f evaluated at previous a posteriori estimate x̂+k−1.

5. The a posteriori estimate is found by adding the a priori estimate and weighted difference between the
actual and the predicted output.

Lk = P−k H
T
k (HkP

−
k H

T
k +R)−1

x̂+k = x̂−k + Lk(yk − hk(x̂−k ))

P+
k = (I − LkHk)P−k (I − LkHk)T + LkRkL

T
k

where Hk is the jacobian of h evaluated at previous a posteriori estimate x̂+k−1.

6. Repeat the steps (3), (4) and (5) for all time instants t1, ..., ts.

4.2 A-Posteriori Indentifiability Test

The extended Kalman filter doesn’t have convergence guarantees. Divergence of algorithm can be easily
detected but we need to look out for situations where we get incorrect estimates due to modeling errors.

Suppose we need to estimate parameters θ from noisy measurements as mentioned before. Assume that
p different quantities can be measured. Then the parameter estimation problem can be written as -

ẋ = f(x, θ, u) + w

θ̇ = 0

x(t0) = x0

θ(t0) = θ0

y
(1)
k = h

(1)
k (x(tk)) + v

(1)
k

...

y
(p)
k = h

(p)
k (x(tk)) + v

(p)
k

We assume v is a zero mean Gaussian with covariance matrix R whose diagonal entries are σ2
1 , ..., σ

2
p.

Suppose that by running the HEKF, we find an estimate θ̂0 of θ0. Let xθ̂0(t) be the solution corresponding

to θ̂0. Assuming that xθ̂0(t) is a reasonable estimate of x(t), we can write -

v̂
(i)
k = y

(i)
k − h

(i)
k (xθ̂0(tk))

We have s samples of p zero mean Gaussian random variables.

4.2.1 Point Estimate of Noise Variance

ξi =

∑s
k=1(v̂

(i)
k )2

s− 1

ξi should be close to σ2
i .
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4.2.2 Interval Estimate of Noise Variance

We can form interval estimates for σ̂i
2 corresponding to different confidence coefficients γ = 1 − δ. Denote

χs,δ as the 100δ-th percentile of the χ2 distribution with s degrees of freedom. Then, σ̂i
2 lies in the interval

(s− 1)ξi
χs,1−δ/2

≤ σ̂i2 ≤
(s− 1)ξi
χs,δ/2

with probability γ.
If σ2

i doesn’t lie in the above interval, we can reject θ̂0 with 100γ% confidence and if σ2
i lies in the above

interval, we can accept θ̂0 with 100γ% confidence.

4.3 Model Selection

Suppose there are many models Σ1, ...,Σn which can be used to explain the observed data. A model selection
algorithm can be used to determine which of the models explain the data best. The algorithm is as follows -

1. Run the HEKF on the models Σ1, ...,Σn to obtain state estimates x̂+1 , ..., x̂
+
n .

2. Compute the estimates of the measurement noises v̂1, ..., v̂n.

3. Form point and interval estimates of the variance of each component of v̂1, ..., v̂n.

4. Discard the models in which the interval estimates do not contain the real variances of vk.

5. Select the model whose variances match the best with the real variances of vk.

5 Experiments

To illustrate the use of methods developed above, the following is done -

1. Data is generated for four hundred points using the model given in section 3 for the heat shock response.

2. Outputs of Dt and St are corrupted by zero mean Gaussian noise of variance σ2
1 = 1.24 ∗ 105 and

σ2
2 = 737.94 respectively.

3. A sparse sample of points is provided as the observed data which is similar to what is obtained in the
experiments.

4. The sampling is done at seven points between 0 & 40 to collect data for the transient response. Then
uniform sampling is done between 50 and 400 at intervals of 25 minutes which gives seventeen points.

5. It is assumed that the parameters αs and Kd are not available and are needed to be estimated from
the observed data.

6. HEKF is applied to the data and estimates of αs and Kd are obtained.

7. A posteriori identifiability test is applied to see if the model is reasonable.

8. A second model is proposed which doesn’t model the actual biological phenomena completely. Model
selection algorithm is applied to see which model works better.

5.1 Results of HEKF

5.2 Parameter Values

The points joined by green lines in Figure 3 are averaged to find the parameter values.

Parameter True Value Estimated Value
Kd 3 min−1 3.0257 min−1

αs 3 min−1 3.0462 min−1
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(a) Number of Chaperones (b) Number of σ32

Figure 2: Variation of Molecules

(a) Variation of Kd (b) Variation of αs

Figure 3: Variation of Parameters
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5.3 Indentifiability Test

Noise Variance True Value Point Estimate Lower Bound Upper Bound
σ2
1 1.24x105 0.76x105 0.43x105 1.46x105

σ2
2 737 961 549 1838

The true value of noise variances lie in the bounds for the required 95% confidence. Hence, we can accept
the model with 95% confidence.

5.4 Model Selection

Consider another model with the following equations -

Ḋt =
KdSt(1 +KuUf )

1 +KuUf +KsDt
− αdDt

Ṡt = η′(T )− α0St − αsSt
U̇f = K(T )[Pt − Uf ]− [K(T ) +Kfold]Dt

One of the feedback for the number of σ32 molecules loops has not been accounted for. Instead the value of
η(T ) for the heat shock response has been changed to account for the increase in steady state value of σ32

molecules. The new value of η is η′ = 390 during heat shock response.
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On applying the HEKF, we get the following -

(a) Number of Chaperones (b) Number of σ32

Figure 4: Variation of Molecules in Different Models

(a) Variation of Kd (b) Variation of αs

Figure 5: Variation of Parameters in Model 2

Parameter True Value Estimated Value
Kd 3 min−1 3.031 min−1

αs 3 min−1 2.983 min−1

On applying the identifiability test, we obtain -

Noise Variance True Value Point Estimate Lower Bound Upper Bound
σ2
1 1.24x105 1.33x107 7.78x106 2.61x107

σ2
2 737 13793 7875 26375

Value of the variances don’t lie in the intervals needed for 95% confidence. We reject Σ2 with 95% confidence
and accept Σ1 with 95% confidence.
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6 Conclusion

It is demonstrated how methods like HEKF can be used for parameter estimation in computational biol-
ogy problems. Secondly, a method of a posteriori identification was illustrated. Finally, HEKF and the
identifiability test were used to discriminate between two competing models and choose the better one.
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8 Code

An associated jupyter notebook can be found in this github repository.
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https://github.com/akagrecha/Parameter-Estimation-In-Computational-Biology.git
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